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Why Inverse Graphics?
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Why Inverse Graphics with LLM?
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Why Inverse Graphics with LLM?
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Yi et al, 2018
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Why Inverse Graphics with LLM?
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Goal of This Work

★ To access the efficacy of LLMs in inverse-graphics tasks

★ Simple Version: Re-generate scene attributes from a single image
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Challenge - Precise Spatial Reasoning

Can LLMs, originally used to address semantic-level queries, be applied to the precise 

realm of inverse-graphics task? 
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? Depth of the objects ? Location in 3D space



What Can LLMs Offer?

Generalization - ability to generalize with various vision tasks

Instruction Tuning - recent development leads LLMs to efficiently understand image 
into the adaptation in downstream tasks with a small set of instruction tuning; result 
in accessible computation.

17



Overview of Methodology
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Methodology - Tuning LLMs for Inverse Graphics 
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Architecture

LLaMA 1-based 
Vicuna 1.3 model

(Touvron et al, 2023)

Vision-Language 
Alignment

Frozen CLIP
(Radford et al, 2021)

LLaVa Base Model
(Liu et al, 2023)

Vision-encoder 
projector
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Methodology - Training Data Generation 

CLEVR: A Diagnostic Dataset for
Compositional Language and Elementary Visual Reasoning

CLEVR: A Diagnostic Dataset for Compositional Language and 
Elementary Visual Reasoning (stanford.edu)

Instruction: What Python blender code 
could be used to produce this scene?

https://cs.stanford.edu/people/jcjohns/clevr/
https://cs.stanford.edu/people/jcjohns/clevr/


Methodology - Training Data Generation
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Training Sample
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Methodology - Precise Numeric Reasoning in LLMs 

From challenge in Precise Spatial Reasoning
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Methodology - Precise Numeric Reasoning in LLMs 

From challenge in Precise Spatial Reasoning
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Evaluations
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 Compositional 
Generalization on CLEVR

Goal: Show the result of 
IG-LLM compared to 

NS-VQA

Dataset:  CLEVR-CoGenT

Numeric Parameter-Space 
Generalization

Goal: Explore the ability of 
numeric head with char and 

float base model

Dataset: generated (x, y) 
position 

 6-DoF Pose Estimation

Goal: Experiment IG-LLM 
with the more complex tasks

Dataset: ShapeNet (mimic 
CLEVR format)



Evaluations - [1] Compositional Generalization on CLEVR 
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Dataset:  CLEVR-CoGenT

Yi et al, 2018
NS-VQA: Neural-Symbolic VQA ID: In-Domain

OOD: Out-of-Domain

L2 



Evaluations - [2] Numeric Parameter-Space Generalization
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Evaluations - [3] 6-DoF Pose Estimation
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Single-Object 6-DoF

What is 6-DoF?



Evaluations - [3] 6-DoF Pose Estimation
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Scene-Level 6-DoF



Discussion and Limitations

- Ground work (a good starting point 

for applying LLM) in inverse 

graphics task within controlled 

settings

- Limitation in scene diversity and 

code format

- Evaluation is relatively simple 

(white background and empty set) 

and the framework is still 

challenging in real-world image
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Conclusions
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- IG-LLM can be used in inverse graphics 
task in a more generalization

- In scene generation, the model 
performs better in out-of-domain

- Numeric head in the model provides 
generalization in spatial reasoning and 
smoother dynamic during training steps

- The evaluations  demonstrates the 
ability of IG-LLM to leverage the 
general knowledge of LLMs in solving 
inverse-graphics problems, opening a 
new avenue for research.
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https://openreview.net/forum?id=u0eiu1MTS7


Interesting Discussion
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