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What is Inverse Graphics?
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Why Inverse Graphics?
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Why Inverse Graphics with LLM?
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Why Inverse Graphics with LLM?
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Goal of This Work

% To access the efficacy of LLMs in inverse-graphics tasks
% Simple Version: Re-generate scene attributes from a single image
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Challenge - Precise Spatial Reasoning

Can LLMs, originally used to address semantic-level queries, be applied to the precise
realm of inverse-graphics task?
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What Can LLMs Offer?

Generalization - ability to generalize with various vision tasks

Instruction Tuning - recent development leads LLMs to efficiently understand image

into the adaptation in downstream tasks with a small set of instruction tuning; result
in accessible computation.
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Overview of Methodology

What Python Blender code could
be used to produce the scene?

0 \/
—>[[1ne]ml...]—>ﬁ

add( +

loc=(-0.882, 1.742, 0.697),

size="big",
color="purple",
material="purple",
shape="cube", > >
rot=-0.238,
)
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Methodology - Tuning LLMs for Inverse Graphics

LLaVa Base Model
(Liu et al, 2023)

Architecture

Frozen CLIP
(Radford et al, 2021)

what Python Blender code could
be used to produce the scene?

Vision-Language

Alignment
LLaMA 1-based
Vision-encoder ([1M6] |what PythonenderI Code > ] .

_ Vicuna 1.3 model
projector (Touvron et al, 2023)

add( +

loc=(-0.882, 1.742, 0.697),

size="big",
color="purple",
material="purple",
shape="cube",
rot=-0.238,

)




Methodology - Training Data Generation

CLEVR: A Diagnostic Dataset for

Compositional Language and Elementary Visual Reasoning

Questions in CLEVR test various aspects of visual reasoning
including attribute identification, counting, comparison,
spatial relationships, and logical operations.

Q: Are there an equal number of large things and metal spheres?
Q: What size is the cylinder that is left of the brown metal thing that is
left of the big sphere?

Q: There is a sphere with the same size as the metal cube; is it made of
the same material as the small red sphere?

Q: How many objects are either small cylinders or red things?

CLEVR: A Diagnostic Dataset for Compositional Language and

Download

Main Dataset

This is the main dataset used in the paper. It consists of:

« A training set of 70,000 images and 699,989 questions

« A validation set of 15,000 images and 149,991
questions

+ Atest set of 15,000 images and 14,988 questions

« Answers for all train and val questions

« Scene graph annotations for train and val images giving
ground-truth locations, attributes, and relationships for
objects

« Functional program representations for all training and
validation images

Download CLEVR v1.0 (18 GB)
Download CLEVR v1.0 (no images) (86 MB)

All data is released under the Creative Commons CC BY 4.0 license.

Compositional Generalization Test (CoGenT)

This data was used in Section 4.7 of the paper to study the ability of models to recognize
novel combinations of attributes at test-time. The data is generated in two different

conditions:
Condition A
» Cubes are gray, blue, brown, or
yellow
« Cylinders are red, green, purple, or
cyan
» Spheres can have any color

This dataset consists of:

« A training set of 70,000 images and
699,960 questions in Condition A

« A validation set of 15,000 images
and 150,000 questions in Condition
A

« A validation set of 15,000 images
and 149,991 questions in Condition
B

Condition B
« Cubes are red, green, purple, or
cyan
« Cylinders are gray, blue, brown, or
yellow
= Spheres can have any color

« Atest set of 15,000 images and
149,980 questions in Condition B

« Atest set of 15,000 images and
149,992 questions in Condition B

« Answers, scene graphs and
functional programs for all train and
val images and questions

Download CLEVR-CoGenT v1.0 (24 GB)
Download CLEVR-CoGenT v1.0 (no images) (106 MB)

Elementary Visual Reasoning (stanford.edu)

Instruction: What Python blender code
could be used to produce this scene?
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https://cs.stanford.edu/people/jcjohns/clevr/
https://cs.stanford.edu/people/jcjohns/clevr/

Methodology - Training Data Generation

be used to produce the scene?

\/

[What Python Blender code could ]

What| Python ender Code ' >

add( +

loc=(-0.882, 1.742, 6.697),

size="big",
color="purple",
material="purple",
shape="cube", > >
rot=-0.238,
)

- Training Sample

add(color='green', size='tiny', material='shiny', shape='cylinder', loc=(2.163, -1.384,
— 0.350))

add(material='metal', rotation=-0.126, shape='cube', loc=(-0.033, -2.456, 0.700),
— color='blue', size='large')

add(size='large', material='rubber', color='blue', loc=(1.352, 1.165, 0.700),

- shape='sphere')

add(color='brown', material='matte', shape='cube', size='tiny', loc=(-1.185, 2.816,
< 0.350), rotation=0.144)
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Methodology - Precise Numeric Reasoning in LLMs

From challenge in Precise Spatial Reasoning

W M

\/ \/ \

= 0 , [NUM]
MLP }+ -0.882

(a) Discretized numerics (b) Continuous numerics

Figure 2: Numeric Head. (Sec. 3.4) Rather than producing digits as discrete tokens (a), we train our
model to generate a [NUM] token when a number should be produced. The [NUM] token is used as a mask
to signal the embedding should instead be passed through the numeric head, preserving the gradient (b).
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Methodology - Precise Numeric Reasoning in LLMs

From challenge in Precise Spatial Reasoning
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Figure 2: Numeric Head. (Sec. 3.4) Rather than producing digits as discrete tokens (a), we train our
model to generate a [NUM] token when a number should be produced. The [NUM] token is used as a mask
to signal the embedding should instead be passed through the numeric head, preserving the gradient (b).
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Compositional
Generalization on CLEVR

Goal: Show the result of
IG-LLM compared to
NS-VQA

Dataset: CLEVR-CoGenT

Evaluations

Numeric Parameter-Space
Generalization

Goal: Explore the ability of
numeric head with char and
float base model

Dataset: generated (x, y)
position

6-DoF Pose Estimation

Goal: Experiment IG-LLM

with the more complex tasks

Dataset: ShapeNet (mimic
CLEVR format)
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Evaluations - [1] Compositional Generalization on CLEVR

NS-VQA, and are able to achieve >99% accuracy on the ID condition, the baseline fails to generalize, with
its shape-recognition accuracy dropping by 66.12%. Color, Mat., and Shape represent respective accuracies
and 1 indicates greater is better.

Dataset: C L EV R-COG e nT Table 1: CLEVR-CoGenT Results. (Sec. 4.1) While both our proposed framework and the baseline,

ID 00D
Char Float NS-VQA ] Char Float NS-VQA
JL2 0.21 0.16 0.18 0.22 0.17 0.18

1Size 99.71  99.77 100.00 | 99.74  99.80 100.00
tColor  99.58 99.71 100.00 | 98.60 98.14 99.95

1Shape 99.51 99.59 100.00 | 93.50 93.14 33.88

Yietal, 2018
NS-VQA: Neural-Symbolic VQA ID: In-Domain

-“ -“”°"“°‘S°g“’““ D OOD: Out-of-Domain

(a) Input (b) NS-VQA (c) Ours 1. Scene Parsing (de-renderin n
1L Question Parsing 1 59
(@ Question (Program Generation) () Program MSE = — E (},1/ - }/1: )
LSTM | —> 1. filter shape(scene, cylinder) n <« 1
1=

How many cubes that Lo —> 2. relate(behind)
are hehir:dthe cylinder = oo ao |[LSTM ] —> 3. filter_shape(scene, cube) —>
are large? [ISTM | —> 4. filter_size(scene, large)

LSTM |=> 5. count(scene) 25




Evaluations - [2] Numeric Parameter-Space Generalization

1000 | ~——— Char
20 == Float
~ W 800
= 15 =
i<} _5 600
© =
o ©
T 10 % 400
2 S
5 200
0 —— (= - 0 —
Char Float Char Float 10k _ZOK 30k 40k
ID ID OOD O0OD Training Step

(a) Train Distribution (b) Char Model Pred. (c) Float Model Pred. (d) ID-OOD (e) Dynamics
Figure 5: 2D Parameter-Space Generalization. (Sec. 4.2.1) (a) Training positions are sampled from the
checkerboard. When evaluated on images with uniformly sampled positions, the char-based model fails to
generalize outside the training distribution (b) while the float-based model effectively interpolates samples
(c). Randomly sampled testing locations are shown in red and the corresponding predictions in blue. (d)
shows that, while both methods well estimate samples from the ID condition, the char-based model struggles
to generalize. (e) shows a plot of the model’s validation MSE as a function of the number of training steps.
We observe that the training of the float-based model is much smoother and converges quickly.
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Evaluations - [3] 6-DoF Pose Estimation

Single-Object 6-DoF

What is 6-DoF?

Figure 7: OOD Single-Object 6-DoF Samples. (Sec. 4.3.1) A sample 6-DoF reconstruction of real-world
images. The model is finetuned with only Blender renderings of toy airplanes that have a white backdrop.
See Fig. S.10 for additional samples.

Table 2: Single-Object 6-DoF Results. (Sec. 4.3.1) When evaluating on ID data in the one-million-sample
single-object 6-DoF eval, we observe little difference between models; both well capture the distribution.

JL2  |Geod. 71Color 1Mat. 1Shape

Char 0.02 5.03 79.10 99.00 99.80
Float 0.04 6.18 81.90 99.00 100.00
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Evaluations - [3] 6-DoF Pose Estimation

S L I 6 DoF Table 3: ShapeNet 6-DoF Results. (Sec. 4.3.2) The float-based model outperforms the char-based variant
cene-Leve -Do across all evaluations. Chamf. represents the Chamfer distance between the ground-truth and estimated
scenes. Cat. represents category accuracy (sofa, chair, table).

1D OOD-T OOD-T+S
Char  Float | Char Float ‘ Char Float
JL2 0.23 0.21 0.28 0.26 0.37 0.36

lGeod. 805 5.78 | 12.95 9.79 | 44.47 41.31
lCount 0.01 0.01| 0.04 005| 0.05 0.05
tColor ~ 80.96 84.27 | N/A N/A | N/A N/A
1Shape  91.96 94.05 | 76.89 81.67 | N/A N/A
1Cat. 97.92 98.58 | 96.48 97.65 | 86.52 88.23
JChamf. 0.41 0.24 | 0.72 050 | 256 2.44

Figure 8: OOD ShapeNet 6-DoF Samples. (Sec. 4.3.2) Two sample reconstructions from the OOD
ShapeNet 6-DoF pose-estimation experiment. Left to right: mput output. We evaluate on assets not shown
during training, with out-of-distribution textures. See Fig. S.9 for additional samples.



Discussion and Limitations

Ground work (a good starting point
for applying LLM) in inverse
graphics task within controlled
settings

Limitation in scene diversity and
code format

Evaluation is relatively simple
(white background and empty set)
and the framework is still
challenging in real-world image

Figure S.1: Real-World ShapeNet 6-DoF Samples. (Sec. 4.3.2) Real-world sample reconstructions from
the ShapeNet 6-DoF pose-estimation experiment. We observe that the model is sensitive to OOD camera
configurations. During data generation, the camera is assigned a random pitch and radius, with its optical
axis fixed passing through the global origin. As such, we find that the model learns the bias and is limited
by the expressivity of the training-data-generation framework, and, while it effectively interpolates values,
it struggles to extrapolate outside of the camera configurations on which it was trained on. We observe that
the model is still, however, often able to identify the first few most-salient objects in the scene and produce
meaningful assets (the first two in each of these samples being the rightmost chair then the table) before
attempting to explain background features.
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Conclusions
- IG-LLM can be used in inverse graphics

L task in a more generalization
ﬁ e/g@ - In scene generation, the model
o > performs better in out-of-domain
X - Numeric head in the model provides
generalization in spatial reasoning and
smoother dynamic during training steps
- Theevaluations demonstrates the
v v ability of IG-LLM to leverage the
._,“IMG]E]_,@ general knowledge of LLMs in solving
, inverse-graphics problems, opening a
st ¥ new avenue for research.

loc=(-0.882, 1.742, 0.697),

size="big",
color="purple",
material="purple"”,
shape="cube", > >
rot=-0.238,
)

What Python Blender code could
be used to produce the scene?
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Abstract: Inverse graphics -- the task of inverting an image into physical variables that, when rendered, enable reproduction of the observed scene -- is a fundamental challenge in computer vision and
graphics. Successfully disentangling an image into its constituent elements, such as the shape, color, and material properties of the objects of the 3D scene that produced it, requires a comprehensive
understanding of the environment. This complexity limits the ability of existing carefully engineered approaches to generalize across domains. Inspired by the zero-shot ability of large language models
(LLMs) to generalize to novel contexts, we investigate the possibility of leveraging the broad world knowledge encoded in such models to solve inverse-graphics problems. To this end, we propose the
Inverse-Graphics Large Language Model (IG-LLM), an inverse-graphics framework centered around an LLM, that autoregressively decodes a visual embedding into a structured, compositional 3D-scene
representation. We incorporate a frozen pre-trained visual encoder and a continuous numeric head to enable end-to-end training. Through our investigation, we demonstrate the potential of LLMs to
facilitate inverse graphics through next-token prediction, without the application of image-space supervision. Our analysis enables new possibilities for precise spatial reasoning about images that exploit
the visual knowledge of LLMs. We release our code and data at https://ig-lim.is.tue.mpg.de/ to ensure the reproducibility of our investigation and to facilitate future research.
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Interesting Discussion

Review of Paper2569 by Reviewer BjuB

Review by Reviewer BjuB & 18 Jun 2024, 17:16 (modified: 18 Jun 2024, 17:16) ® Everyone kb Revisions

Summary Of Contributions:

Large language models (LLMs) / Large Multimodal Models (LMMs) have exhibited impressive performance in solving language and vision tasks. Inverse graphics is a challenging task that invert

images into physical variables to enable reproduction of the observed scene. In this paper, authors explores how to harness the powers of LLMs / LMMs to decode visual embeddings into a structured
and compositional 3D-scene representation. Experimental results also demonstrate the potiental of using LLMs in solving inverse Graphics tasks.

Strengths And Weaknesses:
Strengths This paper has studied how to harness the capability of LLMs to solve inverse graphics tasks.

Weaknesses

1. The design of the proposed architectures is simple and lack novelty, which just follows original vision-language models, that use generated 3D data and instructions to train the corresponding IG-
LLMs.

2.In Table 1, it seems the used datasets have achieved nearly 99% precision. Is it really challenging for this task or demonstrate some over-fitting issues? I think more challenging tasks should be
provided to prove the generalization of the proposed method.

3. Do you try some other LLMs as the backbone for alignment?

Requested Changes:
1. The related works should be improved. The current works just mention a lot of works and do not well introduce the background about inverse graphics (e.g., why we need to do it and how we do
it), and also lack many works about LLMs.

Minor issues

1. This paper mentioned many LLM usages. However, LLMs are usually used to process language-only tasks (e.g., GPT-1, GPT-2, GPT-3 and ChatGPT-3.5). In this paper, To be more precise, the models
used in this paper is Large Vision-Language Models (LVLMs) or Large Multi-modal Models (LMMs). I think authors should acknowledge this point.

Broader Impact Concerns:
This paper does not have any borader impact concerns.
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Response by Authors
Official Comment by Authors & 02 Jul 2024, 10:31 @ Everyone

Comment:
We thank the reviewer for their thoughtful comments and suggestions, which we address below.

Simple Approach

We agree with the reviewer's characterization of our approach as simple. This simplicity contrasts with prior inverse-graphics frameworks which typically rely on complex modular
architectures and domain-specific inductive biases. Our approach draws inspiration from a recent shift in NLP away from task-specific designs or well-crafted supervision, toward LLMs that
perform proficiently across a wide variety of tasks with relatively minor design differences and a straightforward training objective. We investigated the use of a float head for estimating
continuous parameters, which enabled the application of metric supervision; however, we kept the framework deliberately generic to maintain the focus of our investigation on
generalization without relying on task-specific designs.

CLEVR Evaluation

Regarding the CLEVR-CoGenT evaluation, the reviewer points out that our baseline achieves >99% accuracy on the ID condition. However, we note that in the OOD case, the model fails to
generalize, with its shape-recognition accuracy dropping by 66%.

We employ the ID setting primarily to validate our hypothesis that LLMs can be taught to recover precise graphics programs from demonstrations, evaluating the ability of our framework to
perform comparably with domain-specific modular designs. The OOD condition, in contrast, tests a much-more challenging aspect of model capability, namely that of compositional
generalization. While CLEVR is visually primitive, it serves as an established benchmark for evaluating compositional generalization. Following the CLEVR setting, we employ further
evaluations to investigate generalization across other shifts, such as across parameter space and visual domains.

Related Work

We thank the reviewer for their suggestion to further improve the related-work section. However, we are unclear regarding the reviewer's comment about lacking citations. If the reviewer is
aware of relevant works we may have overlooked, we would appreciate the reviewer pointing us to them so that we may incorporate them into the text.

Model Terminology

We appreciate the reviewer's comment regarding our use of the term LLM. At the time of writing, the terms LMM and LVLM lacked consistent definitions and were comparatively much-less
used. By referring to our framework as IG-LLM, we intended to better highlight our exploration of inverse graphics as a language task and differentiate our work from those solving coarse
semantic-level tasks. Our use of the term LLM is also in line with prior work such as Hong et al., 2023 (3D-LLM). We will add a sentence to the paper to better clarify this.
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